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1. Introduction

The equations of motion of damped linear n-degree-of-freedom dynamical systems can be
represented by

M3(t) + Cx(t) + Kx() = 0,, x(0) =: x9, x(0) =: xq (1)
for all >0, where
x(t) = [x1() x2(t) ... x, (D] eR” (2)

is the displacement vector, xo € R" and x, e R" are, respectively, the vectors of initial displacements
and velocities, 0, is the zero vector in R” ; the mass matrix M eR"" and the stiffness matrix
K eR™" are symmetric and positive definite, and the damping matrix CeR"™" is symmetric and
non-negative definite.

Let the damping matrix C be positive semi-definite. In this case, some components of system (1)
lack damping. Thus, it can happen that x;(7) for some j = 1,2, ...,n would oscillate persistently
without decaying to zero as f— oo. In this case, system (1) is said to have residual motion. Also,
when C is positive semi-definite, it can happen that x;(#)—>0 for all j = 1,2, ...,n as t— oo . The
latter situation is somewhat surprising since the positive semi-definiteness of C implies that some
components of system (1) lack damping, and hence they would conceivably oscillate persistently
without coming to rest. Thus, a problem to be solved is as follows.

Problem P. In system (1), let the damping matrix C be positive semi-definite. Under what
conditions does system (1) have or not have residual motion?

The authors of Refs. [1-7] have attempted to solve Problem P. The authors of Refs. [1,2,4,6]
have used intuitive arguments to establish the existence or non-existence of residual motion for
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two-, three-, and four-degree-of-freedom systems. In Refs. [3,5,7], the existence of residual motion
is established by matrix rank tests.

In this note, Problem P is solved by giving easy-to-check conditions which establish the
existence or non-existence of residual motion in system (1).

2. Residual motion

In this section, the residual motion in system (1) is studied.
System (1) is written as

e fe-k
dt| x(7) x(7) x(0) Xo
for all >0, where
o 0 I” 2nx2n
A=\ gk —mic <k @

and I, denotes the n x n identity matrix. The solution of system (3) is given by

x(1) X0
el

() = exp(A41) .

for all £>0.

The unique equilibrium point of system (3) is X, = [03 HI]T. The equilibrium point X, is said to
be asymptotically stable if and only if x;(t)—0 and X;(1)—0 for all j = 1,2, ...,n as t— co. Thus,
the asymptotic stability of X, is equivalent to the non-existence of residual motion in system (1). It
is well known that X, is asymptotically stable if and only if 4 is a Hurwitz matrix, i.e., all
eigenvalues of A are in the open left-half of the complex plane, denoted by C?; see. e.g., Ref. [8, p.
103] or [9, Theorem 33, p. 195].

A result is now stated which is relevant to residual motion.

Theorem 2.1. In system (1), if C is a positive definite matrix, then the system does not have residual
motion; equivalently, A in Eq. (4) is a Hurwitz matrix.

Proof. By a result in Ref. [8, p. 123], if C is a positive definite matrix, then X, is the asymptotically
stable equilibrium point of system (3). Thus, there is no residual motion. The asymptotic stability
of X, is equivalent to having 4 a Hurwitz matrix. O

The interesting case of positive semi-definite damping matrix C is now considered. A useful fact
is first stated.

Fact 2.2. If Cis a positive semi-definite matrix, then eigenvalues of the matrix A in Eq. (4) are in C°
or on the imaginary axis of the complex plane.

Proof. See Ref. [10, Theorem 3, p. 246]. [
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Now, the existence or non-existence of residual motion in system (1) is established.

Theorem 2.3. In system (1), let C be a positive semi-definite matrix. System (1) does not have
residual motion if and only if A in Eq. (4) is a Hurwitz matrix.

Proof. Obvious: the equilibrium point X, of system (3) is asymptotically stable if and only if 4 is a
Hurwitz matrix; see, e.g., Ref. [8, p. 103] or [9, Theorem 33, p. 195]. [

Remark 2.4. Theorem 2.3 provides a test by which the existence or non-existence of residual
motion in system (1) can be established. This test requires the computation of all 2n eigenvalues of
the matrix 4 eR*>?". Once the eigenvalues of 4 are computed the existence or non-existence of
residual motion in system (1) is decided. By Fact 2.2, it is guaranteed that A does not have
eigenvalues with positive real parts. If all eigenvalues of 4 have negative real parts, then system (1)
does not have residual motion. If 4 has pairs of eigenvalues on the imaginary axis of the complex
plane, then system (1) has residual motion. Note that multiple eigenvalues of 4 of any multiplicity
on the imaginary axis of the complex plane do not cause instability in the system (unbounded
solution). This statement is proved as follows. Let
x(t
( )] ©

x(1)

for all 7>0. It is straightforward to show that along the solution of system (3), E(t) = —xT(1)Cx(¢)
for all £=0. Since C is positive semi-definite, it follows that E(¢) <0 for all 1>0. Thus, t+— E(¢) is a
bounded (non-increasing) function of time; so are ¢t x(¢) and ¢+ X(¢).

K 0
E() =40 £7(0] [ "y

Next, conditions are sought by which the existence or non-existence of residual motion in
system (1) can be established without computing the eigenvalues of the matrix 4. Before stating
such conditions, some preliminary results are given.

A non-singular matrix, known as modal matrix, is used in the modal analysis of system (1). Let
UeR"" denote the modal matrix. The columns of U are the eigenvectors of the symmetric
generalized eigenvalue problem

Ku; = o My, M

forallj=1,2,...,n, where wf >0 and u;eR" are, respectively, an eigenvalue (undamped natural
frequency squared) and the corresponding eigenvector. The modal matrix is commonly
orthonormalized according to

U'MU = 1,. (8)
Since Eq. (7) holds, it follows that
U'CU=:R, U'KU= diag[w%,w%, ...,wi] =: Q°, 9)

where the symmetric matrix R = [ry] = [ujT Cui]e R"™" is known as the modal damping matrix.
Since C is a positive semi-definite matrix, the diagonal elements of R are non-negative.
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In system (1), let

x(t) = Uq(r) (10)
for all >0, where U is the modal matrix and
40 = [01()) @2(0) ... gu(0)]" €R” (11

is known as the modal co-ordinates. Using Egs. (8) and (9), it is concluded that system (1) can be
written as

§(0) + R(1) + Qq(1) = 0,,  q(0) =t g9 = U Mxo, ¢(0) =: go = U Mxq (12)

for all £>0, where R and Q? are those in Eq. (9). System (12) is the representation of system (1) in
the modal co-ordinates.
An easy-to-check condition for the existence of residual motion in system (1) is now given.

Theorem 2.5. In system (1), let C be a positive semi-definite matrix. If
CM 'K =KM™'C, (13)

then system (1) has residual motion.

Proof. If Eq. (13) holds, then R in Eq. (12) is a diagonal matrix (see, e.g., Ref. [8, p. 144]), where
the diagonal elements are non-negative. Since C is a positive semi-definite matrix, at least one
diagonal element of R, say ry, is zero. Therefore, ¢;(-) in Eq. (12) satisfies the following second
order equation:

ait) + wiq(t) =0,  q(0) =qo,,  41(0) = g, (14)

for all 0. The solution of system (14), ¢+ ¢,(t), is a non-decaying periodic function of time. This
solution guarantees that x(-) in Eq. (10) would not tend to 8, as t—0. That is, system (1) has
residual solution. [

It is remarked that the condition in Eq. (13) is restrictive. There are examples where Eq. (13)
does not hold, however, system (1) has residual motion. An example of such a system will be given
later.

Next, a condition is given that guarantees the existence of residual motion for a large class of
systems. In the following, the null space of a matrix L is denoted by N(L).

Theorem 2.6. In system (1), let C be a positive semi-definite matrix. If
4 N(C) (15)

for at least one j = 1,2, ...,n, where u; is the eigenvector in Eq. (7), then system (1) has residual
motion.

Proof. Let for aj =/, Eq. (15) hold. Thus, all elements on the /th row and the /th column of R in
Eq. (12) are zero. Therefore, ¢;(-) in Eq. (12) satisfies Eq. (14). The rest of the proof is similar to
that of the proof of Theorem 2.5. [
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In order to apply Theorem 2.6, first the eigenvector u; in Eq. (7) is computed for all j =
1,2, ...,n. Then, it is checked whether Cu; = 0, (equivalently, ujTCuj =0)foraj=1,2,...,n
A result to be used subsequently is as follows.

Lemma 2.7. Let CeR"™" be a positive semi-definite matrix. The equality vICv =0 for a
veR" holds if and only if ve N(C). (Equivalently, the inequality vICv >0 holds if and only

ifvgN(C)).
Proof. See Appendix A. [

Next, conditions are given which guarantee the non-existence of residual motion in system (1)
with small damping.

Theorem 2.8. In system (1), let C be a positive semi-definite matrix and let C = ¢C, where the real
number 0<e<«< 1. Moreover, let the natural frequencies of the system, w;, where j = 1,2, ...,n, be
distinct. System (1) does not have residual motion if and only if

¢ N(C) (16)
forallj=1,2,...,n.
Proof. (<) If system (1) does not have residual motion, then by Theorem 2.6, 4; cannot be in the
null space of C (equivalently, C) for any j = 1,2, ...,n.

(=) In system (12), let x(7) = p exp(Ar) for all 1>0, where the vector peC" and scalar AeC.
Then, the resulting eigenvalue problem is

(*M + jeC+ K)p = 0,. (17)

The solution of Eq. (17) is the eigenvalue 4;€C and the eigenvector p;eC", where j = 1,2, ..., n.
The eigenvalue 4;, for sufficiently small ¢, satisfies (see Ref. [11])

A = = eu! Cuy + i(w; + O()) (18)
forallj = 1,2, ...,n, where w; is the undamped natural frequency satisfying Eq. (7) and 1 = /—1.
The conjugate of /; is obtained by changing +i to —i in Eq. (18). Since Eq. (16) holds, by Lemma

2.7, ujTC‘uj >0, and the eigenvalue 4; and its conjugate have negative real parts for all j =
1,2,...,n Thus, x(¢)—0, as t—> 0. [

In order to apply Theorem 2.8, first the eigenvector u; in Eq. (7) is computed for all j =
1,2,...,n. Then, it is checked whether Cu;#0, (equivalently, ujTCuj >0) forallj=1,2,...,n
3. Examples

In this section, several examples are given to illustrate the application of results obtained in this
note in deciding the existence or non-existence of residual motion in system (1).
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Example 3.1. This example is chosen from Ref. [7]. In system (1), let

1 0 0 -1 2 -1 0 0
0 1 -1 0 1 2 -1 0

M=1I C= , K= : (19)
0 -1 1 0 0 -1 2 -1
-1 0 0 1 0 0 -1 2

The damping matrix C is positive semi-definite, whereas the mass and stiffness matrices are
positive definite. It can be easily verified that Eq. (13) holds. Thus, by Theorem 2.5, system (1) has
residual motion. This fact can be corroborated by computing the eigenvalues of the matrix 4 in
Eq. (4); the eigenvalues are

+0.61801, +1.6180i, —1+4+0.61801, —1+1.6180i. (20)

Two pairs of eigenvalues on the imaginary axis of the complex plane imply that the system has
residual motion.

Example 3.2. Consider the system in Fig. 1. In this system, let

m=m=my=1, ¢c=2, ki=1, k=2 k=3 (21)
The coefficient matrices of this system are
0 0 0 3 -2 0
M=L C=|[0 2 0|, K=|-2 5 =3]. (22)
0 0 0 0o -3 3

The damping matrix C is positive semi-definite, whereas the mass and stiffness matrices are
positive definite. It can be easily verified that Eq. (13) does not hold. Thus, Theorem 2.5 is not
applicable.

The eigenvectors satisfying Eq. (7) for the system under consideration are

—0.4415 0.8321 0.3358
up = | —0.6053 |, wu = 0 , uz=[—0.7960 |. (23)
—0.6623 —0.5547 0.5036

Having Cu; computed for j = 1,2,3, it is concluded that u, e N(C). Thus, by Theorem 2.6, the
system in Fig. 1 has residual motion. The eigenvalues of the matrix 4 in Eq. (4) for this system are

+1.7321i, —0.4203+0.34731, —0.5797+2.5283i. (24)

That is, the system has residual motion.

K, K, 3 K

N My N My N M
[O@) [OHO] OO0

Fig. 1. A group of masses and springs. For parameter values in Eq. (21), the system has residual motion. If, however,
the damping element is connected to the first mass m; or the last mass m;, then there will be no residual motion.
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Example 3.3. Consider the system in Example 3.1, except that the damping matrix is

1 -1 0 0

1 1 0 0
C =005 . (25)
0o 0 1 -1
0 0 -1 1

The eigenvectors satisfying Eq. (7) for the system under consideration are

0.3717 —0.6015 —0.6015 —0.3717
0.6015 —0.3717 0.3717 0.6015
u = , Uy = , U3 = , U= . (26)
0.6015 0.3717 0.3717 —0.6015
0.3717 0.6015 —0.6015 0.3717

It can be easily verified that ujT C’uj >0 forallj=1,2,3,4. Thus, by Theorem 2.8, system (1) does
not have residual motion. The eigenvalues of the matrix 4 in Eq. (4) for this system are

—0.0026+0.6181i, —0.0026+1.17571, —0.0474+1.61721, —0.0474+ 190131  (27)

which corroborate the non-existence of residual motion.

4. Conclusions

In this note, linear n-degree-of-freedom dynamical systems, in which the mass and stiffness
matrices are symmetric and positive definite and the damping matrix C is symmetric and positive
semi-definite, are studied. Due to positive semi-definiteness of C, oscillations of the system
components may not decay to zero, in which case the system is said to have residual motion. It
can, however, happen that all components of the system come to rest even when C is positive
semi-definite. The non-existence of residual motion is thus equivalent to the asymptotic stability
of the system. This problem can be solved directly by computing all 2x eigenvalues of the matrix A
in Eq. (4). In this note, conditions are given by which the existence or non-existence of residual
motion is determined without computing the eigenvalues of 4. In these conditions a major role is
played by the eigenvectors corresponding to the (undamped) eigenvalue problem in Eq. (7): (1) if
at least one eigenvector satisfying Eq. (7) belongs to the null space of C, then the system has
residual motion; (2) a system with distinct natural frequencies does not have residual motion if
and only if all eigenvectors satisfying Eq. (7) do not belong to the null space of C, and the
elements of C are sufficiently small. It is conjectured that the latter statement is true even when the
elements of C are not small.

The conditions presented in this note can be used to determine a small (or a minimum) number
of damping elements which would constitute a positive semi-definite damping matrix, however,
would render the system asymptotically stable (no residual motion). For instance, in Example 3.2
(see Fig. 1), if the damping element is connected to the first mass »2; or the last mass m3, then there
will be no residual motion in the system.
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Appendix A

Proof of Lemma 2.7. (=) If ve N(C), then Cv = 0, and vICv = 0.

(<) Since C is a symmetric matrix, it has a complete set of orthogonal eigenvectors; see, e.g.,
Ref. [12, Theorems 3.1.2 and 3.1.3, p. 107]. Let w;e R", where j = 1,2, ..., n, denote an eigenvector
of C. A vector veR" can be written as

v="> ow, (A.1)
J=1
where o;eR for all j = 1,2, ...,n. Thus,
vICy =" 4(O)er, (A.2)
=1

where 4;(C) denotes the eigenvalue of the matrix C forall j = 1,2, ..., n. Since C is a positive semi-
definite matrix, all its eigenvalues are non-negative. If vI Cv = 0, then from Eq. (A.2) it follows
that o; = 0 for all j for which 4;(C) > 0. Therefore,

Cv="C owy =Y oi(C)w; = 0,. (A.3)
j=1 j=1

That is, ve N(C). 0O
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